ITERATED CLASS-SPECIFIC SUBSPACES FOR SPEAKER-DEPENDENT
PHONEME CLASSIFICATION

Paul M. Baggenstoss

Naval Undersea Warfare Center
Newport RI, 02841, USA
phone: (+001) 401-832-8240
email: p.m.baggenstoss@ieee.org
web: www.npt.nuwc.navy.mil/csf
This work was supported by Office of Naval Research ONR 321 US

ABSTRACT transformations available to each phoneme. Under CSM, the

The features based on the MEL cepstrum have long domcommon feature space” is the time-series (raw data) itself
inated probabilistic methods in automatic speech regogni-€ature PDFs, evaluated on different feature spaces are pro
tion (ASR). This feature set has evolved to maximize generdfCted back to the raw data space where the likelihood com-
ASR performance within a Bayesian classifier framework usParson is done. Besides its generality, the CSM paradigm
ing a common feature space. Now, however, with the advertaS many additional advantages as well. For example there
of the PDF projection theorem (PPT) and the class-specififS & quantitative class-dependent measure to optimizathat
method (CSM), it is possible to design features separatel{WS the design of the class-dependent features in isalatio
for each phoneme and compare log-likelihood values fairyfVithout regard to the other classes.

across various feature sets. In this paper, class-dependen

features are found by optimizing a set of frequency-band 2. CLASS-SPECIFIC APPROACH

functions for projection of the spectral vectors, analagouyhen applying CSM, one must find class-dependent signal
to the MEL frequency band functions, individually for each cessing to produce features that characterize each clas

class. Using this method, we show significant improve, gyp-class. We seek an automatic means of optimizing the
ment over standard MEL cepstrum methods in speaker angatrix A for a given subclass. We first review CSM.
phoneme specific recognition.

2.1 Class-Specific Method (CSM)

1. INTRODUCTION Let there beM classes among which we would like to clas-
The MEL cepstrum features [1] and its derivatives have longify. The class-specific classifier, based on the PPT, imgive
been the staple of automatic speech recogniton (ASR) sysy
tems. One may write the MEL cepstrum features as arg n[1na>§op(x|Hm),

z =DCT(log(Ay)), (1) where pp(x|Hm) is the projectedPDF (projected from the

) feature space to the raw data space). The projected PDF is
where vectory is the lengthN/2+ 1 spectral vector, the gjven by

magnitude-squared DFT output and the columnsAoére

the MEL band functions [1]. The logarithm and the discrete Pp(%|Hm) = In(x, Am, Hom) P(zm|Hm), (3)
cosine transform (DCT) are invertible functions. There is ’

no dimension reduction or information loss so they may beavherep{zm|Hm) is the feature PDF estimate (estimated from
considered a feature conditioning step which results inemortraining data) and the J-function is given by

Gaussian-like and independent features. Thus, we may con-

centrate our attention on the matrix multiplication p(x|Hom)

Im(x, Am,H = 4
A o) = e Fom) @

w=Ay. (2)

. - . . . and Hom are class-dependent reference hypotheses. The
The key operation here is dimension reduction by linear prog|ass.dependent features are computed from the spectral
jection onto a lower-dimensional space. Now, with the in-

h h the class-
troduction of the class-specific method (CSM) and the PD%ectoryt rough the class-dependent subspace maties

projection theorem (PPT) [2], one is free to explore class- 2m=C(ALy) (5)
dependent features within the rigid framework of Bayesian m me

classification. Some work has been done in class-dependenmhereC is the feature conditioning transformation. Note that
features [3],[4] however existing approaches are only able the J-function is a fixed function of precicely defined by
use different features through the use of compentationfact the feature transformation fromto z and the reference hy-

to make likelihood comparisons fair. Such approaches workotheses#dym. It is the “correction term” that allows feature

if the class-dependent feaure transformations are resfto  PDFs from various feature spaces to be compared fairly be-
certain limited sets. Both methods fall short of the pot@nti cause the resulting log-likelihood function is a PDF on the
of the PPT which makes no restriction on the type of featureaw data spac&. The J-function is a generalization of the
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determinant of the Jacobian matrix in the case of a 1:1 trans-e Orthonormality . The columns ofA, are an orthonor-

formation. The PPT guarantees timgatx|Hm) given by (3) is

a PDF, so it integrates to 1 overegardlesf the reference
hypothesiHg 1, or the feature transformation producing
from x. It is up to the designer to choos® ,, and A, to
makepp(x|Hm) as good an estimate pfx|Hny) as possible.
The designer is guided by the principle thazif is a suffient
statistic forHmy vs. Ho m, thenpp(x|Hm) will equal p(x|Hm)
(providedp{zm|Hm) is a good estimate). We can also think

mal set of vectors. We use a orthonormality under the
inner product

N/2
<X,y >= 20 EiXiYi,
=

whereg has the value 2 except for the end bins (0 and
N/2) where it has value 1. Ortho-normality under this

of it as a way of imbedding a low-dimensional PDF within a
high-dimensional PDF.

We have good reason, as we shall see, to use a common
reference hypothesiblp, which simplifies the classifier to

inner product means that the spectral vectors will be or-
thonormal if extended to the ful bins. Use of orthonor-
mality helps to stabilize the terp(zm|Hm) asAm is var-

ied.

(6) e Energy sufficiency The energy sufficiency constraint
means that the total energyn

< 2
T

can be derived from the features. Energy sufficiency is
important in the context of floating reference hypotheses
[2]. In order that the classifier result is scale invariant,
we need energy sufficiency. With energy sufficiency, the

term
p(x[Ho)
P(zm/Ho)

will be independent of the variance used on Hhgeref-
erence hypothesis. Note thBt= e}y /N, wheree; =
[1,2,2,2...,2,1], which is composed of the number of
degrees of freedom in each frequency bin. Thus, energy
sufficiency means that the column spaceAgf needs to
contain the vectoe;.

argmaxd(x, Am, Ho) P(zm|Hm)

where the J-functiodm(x) now depends only oA . Note

that in contrast to other class-dependent schemes usinrg pai
wise or tree tests, CSM is a Bayesian classifier and has
the promise CSM of providing a “drop-in” replacement to
the MEL-cepstrum based feature processors in existing ASR
systems.

2.2 Finding a class-specific subspace

We are interested in adapting the matdx to an individ-
ual class. We propose the strategy of selectipgto max-
imize the total log-likelihood of the training data usingth
projected PDF. Let

K
L(xt,x?.. x5 Am) = Z log pp(x'|Hm) (7)

whereK is the number of training vectors. If we expand

Po(x[Hm) 2.2.1 Class-specific iterated subspace (CSIS)
HO)— p(x|Ho) | 4 H Since we would like the feature set created by projecting
Pp(x[Hm) = P(zm]Ho) P(zm|Hm), onto the columns ofA to characterize the statistical varia-

tions within the class, a natural first step is to use prinicipa
whereHg is the independent Gaussian noise hypothesis, weomponent analysis (PCA). To do this, we arrange the spec-
see that the ternp(x|Ho) is independent oAr,. Thus, to  tral vectors from the training set into a matrix
maximizeL, we need to maximize the average value of

X =[y'y?--y"],
log B(zm|Hm) — log p(zm|Ho). (8)

whereK is the number of training vectors. To meet the en-
Our approach is to assume that the first term in (8) is onlyergy sufficiency constraint, we fix the first columnafto be
weakly dependent o\, and concentrate on the secondthe normalizea;
term. Given the simplicity of the reference hypothesisthe & = e
second ternp(zm|Hop) can be known, either in analytic form les]|
or in an accurate analytic approximation [5]. Thus, it isyeas
to analyze its behavior a&, changes. We have obtained the
first derivatives of logp(zm|Hp) with respect to each element
of Ann. We proceed, then by ignoring the tepfezn|Hm) and
maximizing the function

To find the best linear subspace orthogonakip we first
orthogonalize the columns & to e; Xp = X — &;(€1'X).
Let U be the larged® singular vectors oK, or equivalently
the largesP eigenvectors oX,X;,. We then sefA = [é,U].
We then proceed to maximize (9) using an iterative approach.
K We use the term class-specific iterated subspace (CSIS) to
Q(xx%.. xS Am) = — Z\ logp(z,|Ho). (9) refertothe columns oA obtained in this way.
i=

3. EXPERIMENTAL APPROACH

3.1 Data Set

We used the TIMIT [6] data set as a source of phonemes,
drawing all of our data from the “training” portion. TIMIT
consists of sampled time-series (in 16 kHz .wav files) of

The change ip(zm|Hm) can be minimized aA , is changed
by insisting on an orthonormal form fok,. Thus, by max-
imizing L (7) under the restriction thaA, is orthonormal,
we approximately maximize. We apply the following con-
straints toAy:



scripted sentences read by a wide variety of speakers and iB-3.5 Subspace Projection (Matrix Multiplication)

cludes index tables that point to start and stop samples cNfext, the spectral vectors, denotedyaywere projected onto

each spoken phoneme in the text. There are 61 phonemes . . . ; :
the database, having a 1 to 4 character code. We use the teﬁ{r]fevgl?&g Tg&i'&nﬁleiuoﬁgﬁé by a matrix as in (2) resulting

datgclassto represent.the collection of all the phonemes o For MFCC, the columns oA were MEL frequency band
a given type from a given speaker. The average number §f ., ions. The number of columns in matri wasN; + 2
samples (utterences) of a given speaker/phoneme comblq cluding the zero and Nyquist half-bands

tion is about 10 and ranges from 1 up to about 30 for some For CSIS. A was an orthonormal métrix determined

of the_mo_st common phonemes. We used speaker/phonerﬂsm the optimization algorithm. For CSIS, the number of

combinations with no fewer than 10 samples. columns ofA wasP+ 1 whereP is the number of basis func-
tions in addition to the first columey”

3.2 Cross-Validation

In e . f3.3.6 Feature Conditioning

all of our classification experiments, the utterences o

a given speaker/phoneme were divided into two sets, everom a statistical point of view, feature conditioning has
(samples 2,4,6 ...) and odd (samples 1,3,5...). We condlucteffect on the information content of the features. It does,
two sub-experiments, training on even, testing on odd, thehowever, make probability density function (PDF) estiroati
training on odd, testing on even. We reported the sum of theasier if the resulting features are approximately indepan
classification counts from the two experiments. and Gaussian. For MFCC, the features were conditioned by
taking the log and DCT as in (1). For CSIS, features were
conditioned first by dividing features 2 throught+ 1 by the
first feature. This effectively normalizes the featurexsin
We now describe the processing for the features of the MElthe first feature, being a projection ontg, is a power esti-
frequency cepstral coefficient (MFCC) classifier and CSISmate for the segment. Lastly, the log of the first feature is
In order to concentrate on the basic dimension reductign stetaken. Mathematically, we have for CSIS

(equation 2), the simplest possible processing and PDF mod- ,

eling was used. Each step in the processing is described be- w=Aly,

low, in the order in which it is processed. 21 = log(wy),

z=w/wy,i=23,. . .P+1

3.3 Processing

3.3.1 Resampling

We pre-processed all TIMIT .wav files by re_sampling from3.3.7 J-function calculation
16 kHz down to 12 kHz. Phoneme endpoints Were COIey ¢, ion  contributions must be included for FFT

spondingly converted and used to select data from the 12 k agnitude-squared, spectral normalization, matrix mul-

time-series. tiplication, and feature conditioning. See [7] for detaifs
these class-specific modules.
3.3.2 Truncation

The phoneme data was truncated to a multiple of 384 sam3-'3'8 PDF modeling and Classification

ples by truncating off the end. Those phoneme events thalle used a simple multivariate Gaussian PDF model, or
were below 384 samples at 12 kHz were dropped. Doingquivalently a Gaussian mixture model (GMM) with a sin-
this allowed us to use FFT sizes of 48, 64, 96, 128, or 198le mixture component. We assume independence between
samples, which are all factors of 384. the members of the sequence within a given utterence, thus
disregarding the time ordering. The log-likelihood valde o

a sample was obtained by evaluating the total log-likelthoo

of the feature sequence from the phoneme utterance. The
We computed non-overlapped unshaded (rectangular wireason we used such simplified processing and PDF mod-
dow function) FFTs resulting in a sequence of magnitudeels was to concentrate our discussion on the features them-
squared FFT spectral vectors of lendtii2 + 1, whereN is  selves. Classification was accomplished by maximization of
the FFT size. The number of FFTs in the sequence dependémty-likelihood across class models. For CSS and CSIS, we
on how many non-overlapped FFTs fit within the truncatedadded the log J-function value to the log-likelihood valfie o
phoneme utterance. the GMM [2], implementing (6) in the log domain.

3.3.3 FFT processing

3.3.4 Spectral normalization 4. EXPERIMENTAL RESULTS

Spectral vectors were normalized after FFT processing. Fdt-1 Data Description
non-speaker-dependent (MEL cepstrum) features, the speg/e selected fourteen phonemes for our experiments. For
tral vectors were normalized by the average spectrum of akkach phoneme, we chose a set of from four to seven individ-
available data. ual speakers of the same sex. We selected phoneme/speaker
For CSIS (speaker-dependent) features, the spectral vadombinations that had large numbers of utterences per
ues for each speaker/phoneme combination were normalizegpeaker - a minimum of ten utterences per speaker. Thus,
by the average spectrum for that speaker/phoneme. In clasach phoneme set consisted of about 60 utterences. Phoneme
sification experiments the average spectrum was computests were arranged into seven pairs for use in two-phoneme
from the training data to avoid issues of data separation. individual speaker experiments.



4.2 Basis Function optimization
4.2.1 Validation of Assumptions

An important experiment to perform is to validate the as-

sumption used in section 2.2, that maximizingequation
7) can be achieved by maximizir@ in equation (9). Al-
though space does not permit presenting the results, we h

a
obtained overwhelming evidence that the second term in (&%}&:ﬁ

does in fact dominate.

4.2.2 Choice of FFT size and model order

1. E¢is theconfusion matriyerror metric which is the num-
ber of off-diagonal elements in the confusion matrix.
Thus, it is a measure of speaker identity errors without
regard to the phoeneme.

2. Inter-phoneme erroEjp, counts the number of inter-
phoneme errors.

of our experiments used strict separation between train

g and testing data (section 3.2). In all cases, data was sep
arated into even and odd events (utterences). First all lmode
were trained on odd events, events 1,3,5, etc, and tested on
even events, 2,4,6, etc., then all models were trained am eve

The CSIS approach is parameterized by two parameters, thgents and tested on odd events. The error were added to

FFT sizeN, and the model ordd?. The MFCC method is
parameterized by the FFT si2¢ and the number of MEL
bandsN.. We chose to use the same value\bfor MFCC

and CSIS. This ensured that the only significant differenc
between MFCC and CSIS would be the ability to choose
matrix Ay as a function of class thanks to the PPT. Fea-

ture conditioning is also different but is not expected ta-co
tribute greatly to performance differences. For fair comipa
son, we selected the FFT size to maximize the performan
of MFCC, which turned out to bdl = 96. For MFCC, we
used always the optimuid; = 10.

For CSIS, we are left with deciding on the model or-
der P. Refer to figure 1. In which we see the total log-

Toalup-heond

Figure 1: Total log-likelihood (with even-odd cross-
validation) as a function o for speake™MGRLO phoneme
“N” with CSIS.

likelihood L of speakeMGRLO,phoneme “N”, as a function

obtain the aggregate error count.

4.3.2 Two-Phoneme Experiments.

q’he two-phoneme experiments were designed to test the abil-

ity to distinguish speakers of a given phoneme as well as
classify two phonemes in a limited multi-speaker environ-
ment. In each of seven the two-phoneme experiments, we

dgsted both CSIS and MFCC under two conditions. In single-

speaker (SS) classifier training, we separately trained a
model on each speaker/phoneme combination. In phoneme
class (PC) classifier training, we grouped all speakers of a
given phoneme into a single phoneme class. For the SS clas
sifiers, we measure; which included all errors, ané;p
which counts only inter-phoneme errors. For the PC classi-
fiers, we could only measuigy,.

To provide the most meaninful performance comparison,
we optimized the performance of MFCC by finding the best
combination of parameteirs andN; over all seven experi-
ments. MetricEj, was at a minimum a¥; = 10,N = 96. For
Ec, it was close to the minimum at the same parameter set-
ting. Thus, we chosBl; = 10,N = 96 as the benchmark for
comparison.

The seven experiments tested phonemes “lIY” versus
“EH", "AE” versus “EH” , “R” versus “L” , “AX” ver-
sus “AXR” , “IX” versus “IH” , “N” versus “M” , and
“DCL” versus “TCL” . Between four and seven speakers per
phoneme were used with an average of about 12 utterences

of P. Even-odd cross-validation is used (section 3.2). Notgyer speaker/phoneme combination. The results are platted i
that the likelihood increases upfo= 5 then exhibits a steep figure 2. First, CSIS-SS, witR chosen separately for each
decline. This suggests that a dimension-5 subspace is opHtass performed generally better than CSIS-SS(5) which use
mal to represent this speaker/phoneme combination. For thiodel order fixed aP = 5. This indicates that individually
individual speaker experiments, we chose model order fogptimized model order is better. The fact that the model or-

each speaker/phoneme combination in the same way.

ders were determined individually without regard to other

To address the phoneme-class experiments we will neeglasses validates is an important observation. In compari-
to expand the data to include all speakers of a given phonemggn to MFCC-SS, CSS-SS achieved a logEgin all exper-
We expanded the data to all male speakers of “N". and afments. As a means of comparison, MFCC produced higher
tained a peak @ = 8. This indicates that an increase in sub-values ofE; by 14, 22, 38, 22, 7.5, 59, 12 and 12 percent,
space dimension is requ|r6d. In phoneme-ClaSS eXperlmenﬁ] average of 25.5 percent h|gher Using H'ﬁ?error met-

we used a constant value Bf= 8 for all phoneme classes.

4.3 Classification Experiments

ric, for which we have no space to report detailed results,
there was not much difference between CSS-SS and MFCC-
SS. For multi-speaker training, MFCC-PC was consistently

We conducted seven individual speaker experiments, each iketter than CSS-PC.

volving two phonemes (see section 4.1).

4.3.1 Performance metrics

4.3.3 Single-Speaker Experiments.
The single-speaker experiments were designed to test the

Because in each experiment we used a number of individability to distinguish phonemes of a given speaker. In edch o
ual speakers of each phoneme, it is possible to measutBe seventeen single-speaker experiments, we gatherad dat

both inter-speaker errors (speaker identity errors) amerin

from a single speaker and between four and seven phonemes

phoneme errors. We define the following performance metinto one classification experiment and measugdThe re-

rics:

sults are summarized in figure 3. CSIS does generally better
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Figure 2: Comparison of MFCC and CSIS using individual

speaker error metriEc. The experiment number is on the X Figure 3: Comparison of MFCC and CSIS in single-speaker

axis in the following order: “IY” versus “EH”, “AE” versus €xperiments using error metri€;. The experiment number

“EH" , “R” versus “L” , “AX” versus “AXR”, “IX" versus is on the X axis in the following order: fmemO fcegO mkagO

“IH”, “N” versus “M” , “DCL” versus “TCL”. CSIS-SS(5) fapbO mcxm0 mmea0 fdaw0 mgrl0 mkddO msatl mbmal

indicates CSIS with model order fixedRt= 5. mprk0 fkIhO mjma0 mbthO mbcg0 mmimO, which is in or-
der of increasing MFCC error. CSIS(5) indicates CSIS with
model order fixed aP = 5.

than MFCC except in two experiments where it does worse
and one where it is the same. The total number of errors
across the seventeen experiments was 435 for MFCC.
first tried CSIS with model order fixed & = 5 (indicated
as CSIS(5) in the figure) and acheived total errors of 385.
We then selecteR individually by maximizing the total log-

likelihood (section 4.2.2) and acheived 361 errors, a reduc

cluster speakers into like-sounding groups, which can be
represented by separate low-dimensional CSIS models.
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